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U CHAFrER 1

INTRODUCTION

Review of Phase I Studies

This report describes studies conducted for Phase II of the project "Restraining Post-

Liquefaction Flow Deformations". To provide a context for this report, the background of the

project will be reviewed briefly and some key findings from the first phase will be presented.

I In Phase I of the project, studies were focussed on the use of piles to restrain flow

E deformations. This topic was of considerable interest to the US Army Corps of Engineers

because pile-nailing of the upstream slope of Sardis Dam in Mississippi was being considered as

I an option for restraining sliding of the slope on a potentially liquefiable thin layer in the foundation

I (Fin et al., 1991).

The key factors controlling the feasibility and cost of pile installations to restrain flow

deformations are pile length and spacing, stiffness and strength of unliquefied soils surrounding

I the piles, residual strength of liquefied soils, the geometry of the structure, and the intensity of

I shaking after liquefaction has occurred. The ability to analyze such a complex problem while

taking into account nonlinear behaviour of soil, potentially large strain deformations in

I unremediated parts of the structure and a realistic interaction between piles and soil during both

I static and seismic loading is the essential requirement for determining the best location for the

piles, an appropriate length and size and for categorizing the effects of soil properties.

I Very little is known about the behaviour of piles under these complex conditions. Most of

I the evidence is from Japan where pile foundations have been severely damaged in liquefied ground

as a result of ground displacements. However these piles were designed for vertical static loading

I
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I only and both piles and the connections to the pile caps were inadequately designed to resist

I horizontal loading. Piles in Oakland Harbor were similarly damaged during the Loma Prieta

Earthquake of 1989. Therefore there is a need for detailed analytical studies of pile installations

to provide much needed information on the potential performance of piles under these demanding

I situations and hence provide a framework of understanding for design of cost effective

remediation measures.

The computer programs TARA-3 (Finn et al., 1986) and TARA-3FL (Fmn and

I Yogendrakumar, 1989) were used to conduct the studies in Phase I. It was the first time such

i analyses had been performed. The findings of the Phase I studies were used to develop the design

requirements for the piles for remediating Sardis Dam. The pile design resulted in very substantial

I savings in remediation costs compared to alternative proposals. The design would not have been

I feasible without the Phase I studies.

The studies for Sardis Dam could be conducted using the plane strain 2-D analyses in the

I TARA-3 suite of programs because remediation was necessary across a long longitudinal section

of the dam. Where such conditions do not hold, 3-D analyses are necessary.

Full 3-D nonlinear dynamic analysis of pile groups is not a feasible proposition for

engineering practice at present. It makes impractical demands on computational speed and

capacity and renders the extension to dynamic effective stress analysis extremely difficult. Full

i 3-D analysis also inhibits the detailed parametric studies which are so important in exploring cost-

efficient remediation options. A simplified model for the 3-D soil continuum under horizontal

I shaking by vertically propagating shear waves has been developed which overcomes these

I difficulties. This simplified 3-D model captures the significant motions and stresses in foundation

I
I
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I soils with acceptable accuracy during ground shaking and provides the basis for significant

I advances in the seismic analysis of piles.

This report is restricted to describing the evolution and validation of a proposed simplified

I 3-D method of analysis of the dynamic response of piles that greatly reduces the computational

I demands for solving practical problems. It is not a state-of-the-art study of the dynamic response

of pile foundations. References to the literature are restricted primarily to case studies used for

validation.I
Structure of Report

A general simplified model of the dynamic response of the soil continuum is presented

I first. Then particular models based on different simplifying assumptions (Matsuo and Ohara,

I 1960; Veletsos and Younan, 1994; Finn and Wu, 1994; Finn et al., 1994ab) are derived from the

general case. The performance of these models is assessed using the classic solution of Wood

I (1973) for the dynamic pressures against rigid walls by a homogeneous elastic backfill. The

I validation study indicates that the proposed simplified model performs very well over a wide

range of soil properties. The solution for rigid walls has important applications in remediation

studies in its own right. A generally useful remediation measure is the inclusion of concrete plugs

I such as slurry walls to restrain soil deformations. Assessment of the stability of such walls

I requires estimates of the seismic lateral pressures. This type of remediation was one of the

options considered for Sardis Dam.

I The model is modified to accommodate piles in the continuum. The equations of motion

I for the soil-pile system are formulated in tems of finite elements. Elastic solutions for pile

impedances are validated against the full 3-D solutions by Kaynia and Kausel (1982).I
I
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The model is extended to nonlinear response by ensuring compatibility between soil strains

and the strain dependent moduli and damping of soils continuously during dynamic analysis. Tis

is a major modification of the equivalent linear method used in computer programs such as

SHAKE (Schnabel et al., 1972).

The proposed method of analysis is also validated using data from a forced vibration test

on a Franki pile conducted at the Pile Research Facility of the University of British Columbia (Sy

and Siu, 1992). Data from centrifuge tests on pile foundations under strong shaking conducted at

the California Institute of Technology (Gohl, 1991; Finn and Gohl, 1987) allow validation of the

proposed method of analysis when nonlinear soil effects are important. For the first time, the

variation of pile stiffness and damping with time are traced during strong shaking.

Finally, extensions of the method will be discussed. These extensio.,s include analysis of

pile groups, rocking effects and dynamic effective stress analysis.



CHAPTER 2

SIMPLIFIED EQUATIONS FOR DYNAMIC RESPONSE OF FOUNDATION SOILS

The soil is assumed to be a homogeneous, isotropic, elastic solid with a shear modulus G

and a Poisson's ratio v. The equation of motion for the soil continuum in the horizontal direction,

x, is written as

&X (2.1)

where a. is the normal stress in the x direction and . is the shear stress in the x-y plane.

For two-dimensional plane strain conditions, the stress components are related to the

displacements by

2G &z ov
x = _-[(-v)-+v-J (2.2)

1-2v 8x &Y

2G av CuSyT - lvv [( -v)'3 +v "] (2.3)

I= G(•-!+7) (2.4)

IY a -



6

Then the governing equation, Eq. 2. 1, for undamped free vibration of the backfill may be written

as

O 2 a2u +G (2.5)

where p is the mass density of the backfill soil, t is time and 9 is a function of Poisson's ratio v.

The expression for e depends on the approximations used in modelling the dynamic

response of the soil continuum. Three different approximations will be considered.

i) v=O

It is assumed that there is no (vertical) displacement in the y-direction. Applying this

assumption to Eq. 2.2 and Eq. 2.4 gives

S=2(1 - V . (2.6)
aX1-2v o-x

! •Y = G 0(2.7)

I X 8

I Substituting Eq. 2.6 and Eq. 2.7 into Eq. 2.1 and comparing with Eq. 2.5, one finds

e= 2(1 - v) (2.8)
1-2v
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ii) C,- o

Here it is assumed that the dynamic normal stresses, ai, in the vertical direction are

negligible. Applying the assumption to Eq. 2.3, one finds that

- -(2.9)
Cl I- 1v ON

Then from Eq. 2.2 and Eq. 2.4 one obtains.

°Fx = 2 . (2.10)

y =G- GIv (2.11)

I Substituting Eq. 2.10 and Eq. 2.11 into Eq. 2.1 and comparing with Eq. 2.5, one finds

2-v
1- 2"v (2.12)

Iii) Proposed Method (Wu, 1993)

In this method the condition oy = 0 is combined with the assumption that the layered half-

space behaves as a shear beam. The latter assumption implies that
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XY = Clu(2.13)
xyy

The normal stress a. is found by assuming y, - 0 in Eq. 2.3.

2 8u

a• = 2-Ga (2.14)

Substituting Eq. 2.13 and Eq. 2.14 into Eq. 2.1 and comparing with Eq. 2.5, one finds

2 -(2.15)

These three different approximations to the response of the layered half-space are incorporated in

the general expression for the equations of motion (Eq. 2.5) by the parameter 6.

The capability of different approximations to the response of the soil continuum will now

be verified using solutions to the classic problem of dynamic pressures against a rigid wall.
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CHAPTER 3

DYNAMIC ANALYSIS OF RIGID WALL-SOIL SYSTEM

Figure 3.1(a) shows the geometry of the problem and its boundary conditions. A uniform

elastic soil layer is confined by two vertical rigid walls at its two side boundaries and a rigid base.

The soil layer has a total length of 2L and height of H. The original wall-soil problem can be

represented by half the structure because of the antisymmetric conditions. The equivalent problem

is shown in Fig. 3.1(b), and this is the physical model that will be analyzed. The ground

acceleration, U0 (t) is input at the base of the wall-soil system.

Assume the displacement solution of Eq. 2.5 has the form

u(x,y,t) = "" (A. sin amx+ B. cosamxXC. sin bny + D cosby)-Ym(t) (3.1)

Applying the boundary conditions

u=O ....... aty=0 (3.2a)

u=O ....... atx=0 (3.2b)

The constants B and D are determined to be zero, so

u(x,y,t)= X"X C1 -sinamx-sinbnY.Ymn(t) (3.3)
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(a)

_ .du/dy=0

homogeneous elastic soil

H u=O (plane strain) U=O

u=O x

2L

(b)
y

du/dy•= 0

homogenous elastic soil

H ( plane strain du)dx=0

H~ ~ = ff ud f -- 0 X

S~L

Fig. 3.1. Definition of rigid-wall system: (a) original system; (b) equivalent system using
antisymmetric condition.



-= " Clam .cosamx.sinbuy.Y.m(t) (3.4)
8x

i= EE Clb.,innamx-cobny.YmY(t) (.5)

I Applying the other two boundary conditions

I
-=0 ..... at x=L (3.6a)30

I and
au
--=0 ..... at y=H (3.6b)

I
3 one obtains

I am.cosamL=O (3.7a)

I and
b•.cosbnH=0 (3.7b)

therefore,

a. =_2n-17 (3.8a)3 = 2L

and

and bn = (2n- I)% (3.8b)
2H

I
I
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The mode shape functions are written as

0 (x, y) = C1 "sin a x sin buy (3.9)

i and the displacement solution becomes

I
u(xy,t) = IM 0m(X,y)-Yim(t) (3.10)i

I Substituting Eq. 3.10 into Eq. 2.5, one obtains

U -G(Oa2m +b 2).Ynm(t) = pimn (t) (3.1 la)I
G -(Oa 2+ 2 --0t) 2 (3.1 1b)p M n yza(t) ,

IThe natural fequencies of the system are found to be

p

I
i The frequency of the first mode is

I
I
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I 2• _~ (I+O H 2 (3.13)

i In the case of undamped forced vibration caused by a ground acceleration iio(t), the

U governing equation becomes

0 82 82u 82u-2--•U _ +G.21-)+-GC12oU 
(3.14)

i Substituting Eq. (3.10) into Eq. (3.14), multiplying the equation by the mode shape finctions, and

integrating over the domain, one obtains

I Oi pEY 0ij'i(t)'-O.dxdy +11 IJY G(Oa? +b;)0ijYij "bmadxdy

I (3.15)

=-C0 (t) ii pt.(x~y)-dxdyI
i Applying the orthogonality conditions and recalling Eq. (3.12), one obtains

m I p2mdxdy.it (t)+ff pOI dxdy..2mYm (t)

(3.16)

I = -yin(t)= _jo(tJ) _d d

I
I3'u (t)+.2.Yma(t) =-iO (t)- amn (3.17)

I
I
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where

U i" psin(amx).sin(bny)dxdy

"2= Psin2(amx)"in 2 (by)dX.dY

16

IM = (2m- IX2n- 1)ic 2

U
I Let Y.(t) a. f= ft).

I fm (t)+D2m _fMn(t)=-rio(t) (.19)

I
For a damped forced vibration of the wall-soil system, a constant moda: damping ratio X is

I introduced (Seed and Idriss, 1967)

I
fin(t)+ 2 - (t)+UM• fo) - t(3.20)

I For a given ground excitation 60o(t), a close-form solution of the system is found to be

I
u(xy,t)= F'" sinamx.sinbnY'aa.fmn(t) (3.21)

I where f..(t) is the time history solution of Eq. (3.20) corresponding to a particular modal

i frequency o.-. It is noted that Eq. (3.20) is the standard damped vibration equation of a single

degree of freedom system.I
I



The dynamic earth pressure acting on the wall is the normal ess a, at x-0. The dynamic

3 pressure distribution along the wall is

p(x, y, t)x.O = OG Y a .am sin(b.y)'fmr (t)

I From Eq. 2.6, Eq. 2. 10 and Eq. 2.14, the stress coefficient 0 for the different soil models is

I For v = 0; P = 2(l-v)/(l-2v)

3 For oa - 0; 0 = 2/(1-v)

For the proposed method; p = 2/(l-v)I
E The total dynamic thrust acting on the wall is

i p(t) = JHo P(x, y, t)x.O " dY

am-am f(t)
iP(t) = JO. - '• b n (.3

16 frn(t)P(t) = PO. 1: (x 2(2n_ 1)2)L/iH

T
i The total dynamic moment acting at the base of the wall is

I
I
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M(t)=4 y.p(x,yt)x=0"dy

(3.24)

M(t) = oG- am "airea"n(blH)
b~a f,(t)

i For a harmonic input io0(t) - A,. e, the amplitude of the steady state response W.t) is found

i from Eq. (3.20) to be

Am (3.25)
fon 2 2 )+2i4%..DI

I For any excitation i 0 (t) the time history of the modal dynamic thrust associated with a particular

mode is obtained using Eq. (3.23). The time-history of the dynamic thrust for the desired number

of modes is then determined by summation of the time histories of the modal dynamic thrusts.

For earthquake motion the peak modal thrust acting on the wall associated with a

i particular frequency w.' can be determined using the pseudo-spectral velocity S. The pseudo-

spectral velocity S,! is derived from response spectral displacement Sjd by

3 s = d (3.26)

I..
where S." is also the peak f.(t) corresponding to an excitation frequency C).. From Eq. 3.23,

i the peak modal thrust P. is determined by

I
I
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U= P.=OG a='an= sVu (3.27)
I 0

b OM

iTh pe dynmc t i emad by c t md*da peak m by

i some approximate method. Either the absolute sumnmtion or the root square uwmmation of the

peak modal thrusts is commonly used.

I Static Ig Solution: Validation of Model

In the previous chapter, three approximate models of the soil continuum were presented.

The v - 0, ay - 0, and the proposed models were represented by different exprssions for the

i coefficient 0 in Eq. 2.5. It is necessary to examine the accuracy of the solutions given by each

i model. Wood's rigorous solution (Wood, 1973) will be used as the measure of the accuracy of

the approximate solutions. Wood's solution is strictly valid for an elastic layer of finite length

E retained by a wall with a smooth interface at each end. Note that the "static" I-g solution is the

i solution for very low frequencies.

From Eq. 3.25 the static deflection produced by a 1-g static force may be obtained by

letting the exciting frequency w approach zero.

I
2 f((t)- = -- (3.28)

I
i The corresponding l-g static thrust is obtained by substitutin E~q. 3.28 into Eq. 3.23

I
I



II ps OE, am "CaM (:3.29a)
P~t -" [3g••"•b.(b2 +0. m

=6 1.29b)

Pc(2n-1) 2 02_ L/H

The l-g static moment acting at the base of the wall is

SMot = PO3SEY am -at.r-sin(blH)
M2 +0aL) (3.30)

The total thrust against the wall due to 1-g static horizontal force is determined by doing a double

summation for modes m and n in Eq. 3.29. A normalized thnst ratio is defined as

Total Thrust (.

Thrust Ratio= oH2  rs (3.31)

where A. is the peak ground acceleration in m/sec2, ft/sec2 or other consistent units.

The three approximate models are used to obtain the total l-g static force for two

different wall-soil systems with LH - 5.0 and L I- I.S.
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Discussion of Results

IThe results of the analyses are compared with Wood's (1973) solutions for 1/H - 5.0 and

L/H = 1.5 are shown in Figs. 3.2(a) and 3.2(b), respectively. The following observations may be

made

"* For both L/H = 5.0 and L/H= 1.5 for all values ofv, the proposed model gives

I results that are in very good agreement with the exact solutions. The model

I works better for walls retaining finite backfill (L/H = 1.5). The model gives a

total force slightly less than the exact force.I
" For L/H = 5.0, the ac = 0 model yields results that are in very good agreement

I with the exact solution for all v. For walls with long backfills, the accuracy of

the oa = 0 model is comparable to that of the proposed model. The oy = 0

model overestimates the response by about 8%, the proposed model

underestimates the response by about 5%.

* For 1JH = 1.5, solutions by the proposed model are much closer to the exact

Ssolution for all values of v. The c, = 0 model overestimates the total force by

I up to 18%. The proposed model underestimates the total force by less than

4%.I
" The v = 0 model gives good accuracy, provided valuea of v < 0.3. As v

I exceeds 0.3, the solutions start to deviate from the exact solutions. For L/H =

5.0, the accuracy of the solution becomes unacceptable as v > 0.4.



I2
2.00

I (a) L/H-5.O
-Wood's exact

0 1.5 .... proposed method

1 ig1.0

I ~ 0.5

00.1 0.2 0.3 0.4 0.-5
Poisson's ratio

I 2.01
(b) L/H=1.5

o 01.5 - Wood's exact
.... proposed method

I 1.0 =

I ~0.5

0I0. 0.11 0.2 0.'30.05
I Poisson's ratio

1g s:Comparison of approximate solutions for rigid-wail systems with Wood's (1973) exactI ~solution for (a) LfH"'S.0 and (b) IJH'1.5.
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I Recently, Veletsos and Younan (1994) also evaluated the accuracy of the ay - 0 and v - 0

I models compared to Wood's rigorous solution. Their findings regarding these models agree with

those above. However, these more recent studies were limited to semi-infinite backfllis.

The studies indicate that the proposed model gives the best approximation of solutions for

the rigid-wall systems with elastic backfills. Therefore, this proposed model will be used for all

further studies.

I
I
I
I
I

I
I
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CHAPTER 4

ELASTIC DYNAMIC RESPONSE OF PILES

Equations of Motion for Soil-Pile System

The simplified model of the soil continuum derived earlier is now extended to incorporate

the important aspects of 3-D response and adapted to accommodate piles.

Under vertically propagating shear waves the soils mainly undergo shear deformations in

horizontal planes except in the area near the pile where extensive compressive deformations

develop in the direction of shaking. The compressive deformations also generate additional

shearing deformations along the sides of the pile because of the limited extent of the pile cross-

section. In light of these observations, assumptions are made that dynamic motions of soils are

governed by two kinds of shear stresses, and compressive stresses in the direction of shaldng, y.

Let v represent the horizontal displacement of the soil in the direction of shaking, y (Fig.

4.1). The inertial force is ps-'. The compressive force in the direction of shalking is OGY2.

The shear waves propagate in the z direction. The shear force in the xOy plane is G- and the-x2

shear force in yOz plane is G-C Applying dynamic equilibrium in the y-direction, the dynamic

governing equation under free vibration of the soil continuum is written as

ev 0,2v 1V _ 2V
G + OG + GCs~ (4.1)
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soil

shear

* Compression

3-D finite elements

Pile ,I I

Fig. 4.1. Important aspects of pile-soil interaction during horizontal excitation by shear waves.
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where 0 = 2/(l-v), G is the complex shear modulus, and p. is the mass density. Since soil is a

hysteretic material, the complex shear modulus G is expressed as G - Go (l+i 2X), in which Go is

the shear modulus of soil, and X is the equivalent viscous damping ratio. Radiation damping will

be considered later.

Piles are modelled using ordinary Eulerian beam theory. Only the bending moment in the

plane of shaking (yOz) is included. This consideration is appropriate in the case of earthquake

loading for single piles.

The dynamic equation of motion for a vertical pile is written as

E Ia4V (4.2)Epy Y&2 - VPp &2(.

where E•ly is the flexural rigidity of the pile in the direction of shaking, and pp is the mass density

of the pile.

Finite Element Formulation of Equations of Motion

The 3-dimensional soil continuum is divided into a number of 3-D finite elements of the

type shown in Fig. 4.2. The displacement field at any point in each element is specified by the

nodal displacements and appropriate shape functions. A linear displacement field in the soil

element is used because of its simplicity and effectiveness.

The displacement vector v(x,y,z) is expressed as
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I

I tz tz
IV5 8V8

I
V64

SOIL ELEMENT BEAM ELEMMNT

I!
It

Fig. 4.2: Finite elements used for soil continuum and pile.

vI•yz =.~ i.... i , 43

Iwhere N is a shape function, and v" is a nodal displacement.

3 ~Applying the Galerkins weighted residual procedure to Eq. 4. 1, the complex valued

I

I
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[K],1 , = 1 Jg' " 2 G !-i n" + G-a- w) dxdydz (4.4)

I For a vertical beam element, (Fig. 4.2) the stiffness matrix is

I
[12 61 -12 611IEpl1y 61 412 _61 212 (4.5)

- 3 -12 --6 12 -6f
L 61 212 --61 412

U The two nodes in a vertical beam element are shared by adjacent soil elements, thus coupling the

pile and the soil. The stiffness of a node, therefore, is comprised of stiffiess contributions from

i both the pile and the soil.

Consistent mass matrices are used for both soil elements and pile elements. The consistent

I mass matrix for a soil element is

I
[M].il = p. "NiNj "dxdydz (4.6)

The consistent mass matrix for a pile element is written as

[156 221 54 -131
IMPl ppAl / 221 412 131 -3,2/(.7

[M~i 420• 54 131 156 -221[(47

IL-131 -312 -221 412 J

I
I
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I The global stiffness matrix [K] and the global mass matrix [M] are constructed by standard

* routines.

The radiation damping is modelled by using a set of set of dashpots along the pile shaft.

mThe damping force Fd per unit length along the pile is considered proportional to the velocity and

IHis given by

Fd = ' (4.8)

I where

cI =6pV~d a~o-° 5  (4.9)

I
where c, is the radiation dashpot coefficient.

I Gazetas et al. (1993) proposed simple expressions for the radiation dashpot coefficients c,

I for both horizontal motion and vertical motion. The element radiation damping matrix [C]d.. is

H F156 221 54 -131

Crt 221 4t2 131 -32 (4.10)

420 [54 13t 156 -22t
L-13t -312 -22t 402 j

mThe global dynamic equilibrium equation in matrix form is now

H
[M~]({v} +[C] {'} +[K] {v} = {P(t)} (4.I1)

I
I
H
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I in which {v), (*) and (v) are the nodal accelerations, velocities and displacements, respectively,

I and (P(t)) are external dynamic loads.

Solutions of Eq. 4.10 will now be developed to give the stiffiess and damping of single

I piles (pile impedances) as a function of frequency. These impedances will be compared with

I impedances calculated using the full 3-D equations for the continuum to verify the accuracy of the

I proposed model for pile analysis.

I
I
I
I
I
I
I
I
I
I
I
I
I
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CHATR 5

I PILE IMPEDANCES: SOLUTIONS FOR HARMONIC LOADING

I
The impedance Ky are defined as the amplitudes of harmonic forces (or moments) that

I have to be applied at the pile head in order to generate a harmonic motion with a unit amplitude in

I the direction of the specified degree of freedom (Novak, 1991) as shown in Fig. 5.1.

I

I K -oI

I

I i e 0 v-0

Fig. 5.1: Pile head impedances.

The impedances are defined as follows:

K.: the complex-valued pile head horizontal force required to generate unit horizontal

i displacement (u=l.0) at the pile head while the pile head rotation is fixed (0=0).

I

Ui
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I K: the complex-valued pile head moment enerated by the unit lateral displacement (u-1.0)

i at the pile head while the pile head rotation is fixed (0-0)

KI•e: the complex-valued pile head moment required to geat the unit pile head rotation

(0-1.0) while pile head lateral displ is fixed (u-0)I
Since the pile head impedances K,-, K.% Kee are complex valued, they are umualy

i expressed by their real and imaginary parts as

I

Sin which k1 and C, are the real and imaginary parts of the complex impedance, respectively, and

are usually referred as the stiffness and damping at the pile head. i = -1-; cq = Cqi I =

I coefficient of equivalent viscous damping; and w is the circular frequency of the applied load. All

the parameters in Eq. 5.1 are dependent on frequency w. Determination of the pile impedances

i requires solutions of the equations of motion for harmonic loading.

Under harmonic loading P(t) = Poet, the displacement vector is of the form v = voe1 , and

Eq. 4.11 is rewritten asI
{[KJ + i -[C] - w[M) (v.) =(P.) (5.2)

I
or

I [KJ•o• (Vo) = P0o} (5.3)

i
I
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[K]Job= = [K] +i- C]-& 2[M] (5.4)I
I The pile head pen ce K,,, K. and Ka can be obtained using Eq. 4.8 by appy a opria

loading and fixity conditions at the pile head.

I Determination of Impedances K, and K,*

If the pile head is fixed against rotation and a unit horizontal displacement applied at the

pile head, then Eq. 5.3 has the formI
'AV0  0

i [K j 10 K (5.5)

Iwhere v. are the displacements of the nodes other than pile head. Eq. 5.5 can be solved by

I dividing the equation by K• and eliminating the row corresponding to zero rotation

I KJ { = {10 (56)
I
I This "uation suggests that an easier alternative for determining impedances is to apply a unit

i horizontal force at the pile head and caladuate the complex displacement voP. The moment at pile

head MoP corresponding to voP is also calculated.I
I
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N Then the pile head imence K. is determind by

1v 1.0 (5.7)
.0

I

and the corresponding cross-impedance

*V o (5.8)

I Determination of Rotational Impedance Kue

For a pile head fixed against horizontal displacement and given a unit pile head rotation

I Eq. 5.3 has the form

0vo 0
K]JI 1.o0 K- , (5.9)

10(.0J 'Keg,

I
o r 

V
[K]j~w 0~ /K(.10

where VoB are the displacements of nodes other than pile head. The pile head rotation 0.P is the

complex response to the application of a unit moment at the pile head.

I
I
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The rotational impedance Ke is then given as

1.0

ooP

Because of reciprocity principle, the cross-coupling impedances K* and Ks, are identical.

I Dynamic Impedance of Single Piles

Analyses are conducted to determine the frequency dependence of the impedances K.,

I . and Kee for single piles. The dimensionless frequency ratio ao, is used to characterize the

I frequency, where ao is defined by

ao = (5.12)

in which 0D is the angular frequency of the exciting loads (force or moment) at the pile head, d is

the diameter of the pile, and V. is the shear wave velocity of the soil medium. For a uniform soil

profile with a shear modulus G and a mass density p, V. in4 -G .

For given values of E,/EU and ao, the ratios KL.(E.d), KW(Ed 2), and K./(EMd 3), remain

constant as the soil modulus E. varies if the soil profile is uniform. Therefore the normalized

impedances KEd), K•/Ed 2), and Kal(Ed 3) are used in presenting the frequency dependence

of the impedances.
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To assess the accuracy of the proposed simplified 3-D finite element approach, the

I impedance functions of the pile-soil system shown in Fig. 5.2 were computed over a range of

I frequencies and compared with the full 3-D linear elastic solutions of Kaynia and Kausel (1982).

However, the latter solutions, though regarded as benchmark solutions, are not exact. They

assume the form of the pressure distribution between soil and pile at any elevation to be uniform

I around the laterally displacing pile.

I_

single piles:

d d Ep/Es 1,000

L/d > 15 (floating pile)

I soil damping 5%

poisson's ratio 0.4

I

Fig. 5.2: A pile-soil system used for computing impedance functions.

I The impedances are determined for E/E - 1,000, Poisson's ratio v = 0.4, and a damping

I ratio X = 5%.

The finite element mesh shown in Fig. 5.3 is used for the analysis. The heavy dark vertical

element is the pile. Because of the symmetric character of the problem, only half of the full mesh

is required to model the response of pile-soil interaction. The half mesh consists of 1463 nodes

I
I
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I
I

I

I
Fig. 5.3: Finite element modelling of single pile for computing impedance.I

iand 1089 elements. The use of symmetry reduces the size of the global matrix by a factor of 4.0

and greatly reduces the computational time. The computing time is 300 seconds for each

i frequency using a 33 Hz 486 PC computer.

The half-mesh includes only half the pile so that for the linear beam element E, and p.

i must be reduced by a factor of 2. The loads applied to the pile must also be reduced from 1.0 to

0.5. The effects of these reductions must be kept in mind when the corresponding impedances are

I calculated.

I
Discussion of Results

i Since the normalized impedances are complex quantities, they are given in terms of their

i real (stiffness) and imaginary (damping) parts. The computed nomalized stiesses and damping

ratios as functions of dimensionless frequency mo are compared with the solutions of Kaynia and

i Kausel (1982) in Figs. 5.4, 5.5 and 5.6.

I

Ian
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I
I
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- Koynia and Kousel (1982)

8 0Computed by author
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12-- ------------- ------- Kaynia and Kausel (1982)

I 10 Computed by author

N8

I 0.4

0.

I0.00 0.20 0.40 0.60
dimensionless frequency, a.0

I ~Fig. 5A4 Normalized stiffniess k,. and damping C,. versus ao for single piles
(Ep/E1 1000, v=O0.4, IL= S%).
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12-
%10 ---- Kaynia and Kousel (1982)

10 Computed by author

2

0 ii I I p 11 I II

0.00 0.20 0.40 0.600
dimensionless frequency. ao

12 Kaynia and Kausel (1982)
% 10 Computed by author

8

Q 4

I 02

0.00 0.20 0.40 0.60I dimensionless frequency. ao

I ~~Fig. 5.5: Normalized stiffn~ess k.* and damping C. versus ao for single piles

(Ev -. 1000, v -0.4, X=50/).
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dimensionless frequency, ao
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-Computed by author
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0.00 0.20 0.40 0.60
dimensionless frequency, ao

Fig. 5.6: Normalized stiffness keg and damping Cog versus ao for single piles
(Er/E1=- 1000, v=O0.4, X= 5%).
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I In general, the impedances computed by the simplified method agree well with those of

I Kaynia and Kausel (1982). The horizontal stiffhesses k., computed by Kaynia and Kausel (1992)

are about 10% larger than those computed using the simplified model. The other two stiffnesses

kw and ke. show closer agreement. The differences are on the average about 5%.

It is hard to decide which of the two solutions represents more closely the true solution of

I this problem because both were obtained by approximate methods. In Kaynia and Kausel's

solution the horizontal load applied to soil medium by the pile is assumed uniformly distributed on

I the cylindrical soil surface around the pile. This does not model well the non-uniform distribution

of lateral pressure on the cylindrical surface of the surrounding soil caused by the laterally

deflecting pile

I The size and r-amber of the finite elements affect the computed value of the impedance.

The accuracy increases as the number of finite elements increases especially as the frequency

increases. At high frequencies (such as ao > 0.4), large numbers of finite elements are needed to

I capture the number of modes that are significant for response at that frequency.

3 IFigure 5.7 shows a comparison of the dynamic stiffnesses computed by two different

meshes. It is clear that mesh size becomes significant when the frequency becomes high. A finer

mesh is needed to represent the dynamic responses accurately.

I For earthquake loading, the non-dimensional frequency for pile foundations is usually less

than a. = 0.3 for the important frequencies in the ground motions. In this frequency range, the

approximate method proposed is very accurate, even with a rather coarse mesh.I
I
I
I
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I 8

- Fine mesh; (12018010)
........ Coarse mesh; 10xl4xlO1

Q4 - ..-

I

0.00 0.20 0.40 O.60O

dimensionless frequency, ao

Fig. 5.7: Effects of mesh size on stiffiess.

I
I
I
I
I
I
I
I
I
I
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CHAPTER 6

I NONLMEAR DYNAMIC RESPONSE ANALYSIS OF PILES

I
The equations of motion are given by the incremental form of Eq. 4.8 asI

M](A9) +[C](Av,) +[K](v) = {P(t)} = -S]M[I] AVb (t) (6.1)

K Analysis of nonlinear response must be conducted in the time domain. The direct step by step

I integration procedure developed by Wilson et al. (1973) is used to integrate the equations of

motion.

Rayleigh damping is used to model the hysteretic damping of the soil for nonlinear

I analysis. The damping element matrix is given by

I
[C]ejem = a[M]elam + O[K~clam (6.2)I

in which a and f3 are constants related to the viscous damping ratio for the element. Let

a=X./cw1 and P=•,enem (6.3)

I
I where X. is the damping ratio corresponding to element shear strainand oD is the fimdamental

frequency of the system (Idriss et al., 1974).

I The global damping matrix [C] is the aggregate of all the element damping ratios and the

I radiation damping elements along the pile.

I
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I For nonlinear analysis because of integration in the time domain, it is more efficient to use

E a diagonal mass matrix rather than the consistent mass matrix used earlier for harmonic analysis.

Therefore, the mass matrices for soil and beam elements, [M].a and [M]b.., respectively, are

I given by

I
p3 -vol

IMISil = 8 l(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) (6.4)

and

I M]"eai = Pp At {I/2,1/78,1/2,1/78) (6.5)

I
Soil modulus and damping in soils are shear strain dependent (Seed and Idriss, 1970).

I During analysis compatibility is maintained between the computed shear strains and the effective

I modulus and damping in each finite element. The compatibility can be restored for each time

increment during integration of the equations of motion or at specified times which are multiples

of the time increment for integration. This procedure differs from the equivalent linear method

I used in programs such as SHAKE (Schnabel et al., 1972) in which compatibility is enforced only

I after the complete response analysis has been completed. Ensuring final compatibility in that case

requires iterative analysis using the entire duration of the earthquake in each analysis. No iterative

I analyses are required when compatibility is enforced during the analysis.

Two other features distinguish the nonlinear model proposed here from the Schnabel et al.

(1972) model. Shear yielding is incorporated by introducing a very low modulus when the

I strength of the soil is reached. No tensile stresses are allowed. This is accomplished by

I
1
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I introducing a very low modulus when the normal stress in any direction tends to become greater

I than the tensile strength of the soil if any.

The nonlinear method of analysis will be validated now using data from strong shaking

I tests of a single pile in a centrifuge.

I
I
i
I
I
I
I
I
I
I
I
I
i
i
I
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I I CHIAPTER 7

3 ~CENTRIFUGE TESTS ON A SINGLE PILE UNDER STRONG SHAKING

Test Set-Up

The nonlinear method is used to analyze the seismic response of a single pile in a

I centrifuge test which was carried out on the California Institute of Technology (Caltech)

centrifuge by B. Gohl (1991). Details of the test may also be found in a paper by Finn and Gohl

I (1987). Fig. 7.1 shows the soil-pile-structure system used in the test. A 209.5 -m long stainless

I steel tube pile having an outside diameter of 9.52 mm and a wall thickness of 0.25 nun is

embedded in a dry loose sand foundation. The model pile is instrumented by 8 pairs of foil type

I strain gauges mounted on the outside of the pile to measure bending strains at the locations

shown in Fig. 7.1. An average centrifuge acceleration of 60S was used in the tests.

The pile has a free standing length of 16.5 mm above the soil surface. The effect of a

super-structure is simulated by clamping a rigid mass to the head of the pile. The weight of the

I structural mass including the pile head insert and the pile head clamp is 2.416 N. The mass

moment of inertia about the centre of gravity is Iq = 0.0683 N.sece.mm. The centre of gravity of

the mass is located 16.5 mm above the pile head. The model pile has an average flexural rigidity

I of 13.26 N.m2 and a mass density of 74.7 kN/m3.

3 The pile head mass is instrumented using a non-contact photovoltaic displacement

transducer and an Entran miniature accelerometer. The locations of the accelerometer and light

I emitting diode (L.E.D.) used by the displacement sensor are shown in Fig. 7.1. The pile head

3 displacements are measured with respect to the moving base of the soil container.

I
I
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I Fig. 7. 1. The layout of the centrifuge test for a single pile.

I
The sand used for the test was a loose sand with a void ratio e. - 0.78 and a mas density

p - 1.50 Mg/rn. Gobl (1991) has shown that the low strain shear moduli of the sand foundation

U vary as the square root of the depth, and they m be ievaluated using the Hardin and

I Black (1968) Eq. (7. 1)

I GI = 323 0(2.973_e0) 2 ( ) (.1)
I+e. )o(.

I
I
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where e, is the in-situ void ratio of the sand and W, is the mean normal effective confining
J pressure in kPA.

A horizontal acceleration is input at the bae of the systn. The peak acceleratim of the

input motion is 0.158g. The computed Fourier amplitude ratios of the pile head response and the

free field motion with respect to the input motions ar ve in Fig. 7.2(a) and F% 7.*). The

i natural frequency of the free field acceleration is estimated to be 2.75 Hz from Fg 7.2(b) and the

I

7a 4! "0.
.2

i0 i J4 .64 V4 V..,-- O

*rreftcy (Hz)

i 7c

i 6iS 7.. heF 2s.S7f5o1(4:1•)

II
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fudmenal frquency of the pile (from Fig. 7.2(a)) to be 1.1 H1 The period of peak pile

respom is much longer than the period ofthe free field.

i The centrige test was analyzed by the simplified 3-D finite elemnt method of analyis.

Fig 7.3 shows the finite element model used for analysis. The sand deposit is divided into 11

layers, Layer thickness is reduced as the soil surfce is approached to slow more detailed

I modelling of the stress aid strain field where lateral soil-pile interaction is strongest. The pile is

modelled using 15 beam dements including 5 elements above the soil surfmce. The super-

-- structure mass is treated as a rigid body.

GEO.SCRLE ,

AXIS OF

I SYMMETRY

SHAKING DIRECTION

Fig. 7.3. The finite element modelling of centrifuge test.

The finite element analysis is carried out in the time domain. Nonlinear analysis is

i performed to account for the changes in shear moduli and damping ratios due to dynamic shear

strains. The shear-strain dependency of both the shear modulus and damping ratio used in the

I analysis is shown in Fig. 7.4. The low strain shear moduli GQ. were determined using Eq. (7.1).

I
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m ~0.30-

I 0.30MEASURED
I 0.20 COMPUTED

z0.10
0.00

.. -0.10 -

I ~ -0.20-

0.0 10.00 20.00 30.00

TIME ( SEC )

Fig. 7.5. The computed versus measured acceleration response at the pile head.
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20 0
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z
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Fig. 7.6. The computed versus measured moment response in the pile at the ground surface.
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Fig. 7.7. The computed versus measured moment response at depth D -3 m.
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Fig. 7.8. The computed versus measured moment distribution of the pile at peak pile deflection.
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I then decrease to zero at a depth around 12.5 diameters. The moments along the pile have the

same signs at any instant of time, suggesting that the inertial interaction caused by the pile head

mass dominates response, and the pile is vibrating in its first mode. The peak moment predicted

by the simplified 3-D finite element analysis is 344 kNm compared with a measured peak value of

I 325 kNm an error of only 6%.

It is interesting to show the degradation in shear modulus with shear strain around the pile

I during shaking. Distributions of moduli at specific depths and a specific time during the

earthquake are shown in Fig. 7.9. The figures show that significant modulus degradation occurs

near the pile and is most pronounced near the pile head.

Computational Time

Using a PC-486 (33 MHz) computer, the average CPU time needed to complete one

integration step is 7 sec for the finite element grid shown in Fig. 7.3, and 3 hours of CPU time are

required for the full input acceleration record of 1550 steps. The computational time would be

shorter for a linear elastic analysis.

Pile Impedances During Strong Shaking

Dynamic impedances as functions of time were computed corresponding to the strain

dependent shear moduli from the finite element analysis. Harmonic loads with an amplitude of

unity were applied at the pile head, and the resulting equations were solved to obtain the complex

valued pile impedances. The pile impedances were evaluated at the ground surface. This is the

first time that the time histories of pile impedances during an earthquake have been determined.
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single pile at 17.11 sec

I initial shear modulus 12945 kPa

II
I (a) at depth 0.25 m

I
initial shear modulus 36610 kPa

I 3!-

I (a=

S(b) at depth 2.10 m

Fig. 7.9. 3-D) plots of the distribution of effective shear moduli with depth around a pile during
dynamic excitation.

I
I
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U The dynamic stiffness of the pile decreases dramatically as the level of shaking increases

I (Fig. 7.10). The dynamic stiffnesses experience their lowest values between about 10 and 14

seconds, when the maximum accelerations occurs at the pile head. It can be seen that the lateral

stiffness component k, decreased more than the rotational stiffness keg or the coupled lateral-

I rotational stiffiess ke. On the other hand the equivalent damping coefficients increased as the

i level of shaking increased because the hysteretic damping of the soil increased with increased

strains.I

250000Im
200000 N. (N/ra)•d

co 150000

IW kb,(k/m50000 W-.

II ".k. (k I V/m.o

TIME ( SEC )

I Fig. 7.10. Impedances k., k.. and Ice, of the single pile.

I
At its lowest level, k, decreased to 22,000 kiN/, only 15.2 % of its initial stiffness of

I 145,000 kN/m. ke, decreased to 45,000 kN/rad or 36% of its initial stiffness of 125,000 kN/rad.

I
Is
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I k9 showed the least effect of shear strain. It decreased to 138,000 kN.n/rad or 63.6% of its

I initial stiffniess of 217,000 kN.m/rad. The stiff ses rebounded when the level of shaking

decreased with time. Representative values of the pile stiffliesses kw, k. and keg that might be

I used in structural analyses may be taken as 40,000 kN/m, 65,000 kN/rad and 160,000 kN.m/rad,

I respectively. These stiffnesses are 32%, 52% and 73.7% of the original sti&esses.

The effect of frequency on both stiffiaess and damping is explored for a range of

frequencies from 1.91 Hz to 10 Hz at different times during the dynamic shaking of the pile. The

I stiffness response is shown in Fig. 7.11. Clearly within this range of frequencies which is typical

of the frequencies of peak response in many near and medium field earthquake motions, there is

no frequency effect on stiffness.I

m 250000 wm~m. frequency 1.91 N z

,...,frequency 6.00 Hz

200000 +-4--frequency 10.0 H 6I 200000

I i 150000
LL)1,z ktee

1- 00000

I/ : kv

50000 -

0=
0 5 10 15 20 25 30

m TIME ( SEC )

m Fig. 7.11. Variation of pile head stiffnesses with frequency.

m
m
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U The damping response is shown in Fig. 7.12. Clearly, even within this relatively small

I frequency range there is a significant variation in the damping of the pile. This indicates that it is

iEvery difficult to select the proper equivalent dashpot to reflect the damping of a pile foundation in

a structural analysis.

50000
mon-wefrequency 1.91 Hz

frequency 6.00 Hz

40000 frequency 10.0 HzI ' i
U 300001 M
z0I -

| < 20000"

10000 -4AA
~0

I
I0 5 10 15 20 25 30

TIME ( SEC )

I Fig. 7.12. The effect of frequency on pile damping.

I
The centrifuge test provides an opportunity to evaluate the effects of inertial interaction on

the stiffness of a pile foundation. Many procedures in practice for evaluating pile stifflesses are

I based on computing the inertial and kinematic components of soil structure interaction separately

I (Gazetas, 1991a, 1991b). This is acceptable for elastic response because the additional

foundation excitation caused by the inertia of the structural mass does not affect the stiffness of

U the foundation. However, when there is nonlinear response of the foundation, the inertial

I
I
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I interaction of the structure with the foundation can cause major changes in foundation stiffless

E and in the period of peak response.

This is clearly shown by analysis of the single pile in the centrifuge test with and without

I the structural mass. The results of the analysis are shown in Fig. 7.13 which shows the significant

I degradation in pile stiffness due to inertial mass at the pile head for both translational and

I rotational stiffiesses, k, and klif respectively. Clearly, for strong earthquake shaking the effects

of inertial mass cannot be ignored and relying on kinematic stiffiess only may lead to a serious

overestimation of pile stiffness.

So far, validation of the simplified method of analysis has been done by comparing

solutions with published elastic solutions using full 3-D formulations or by data from centrige

I tests. In conclusion, a forced vibration test on a full size pile in the field will now be analyzed.

I
I
I
I
I
I
I
I
I
I
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Fig. 7.13. The effect of inertial interacon on pile head s)ffesse.
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CI CHAPTR

I ANALYSIS OF FULL-SCALE VIBRATION TEST ON A FRANKI PILE

I
Test Set-Up

IA full scale vibration test on a single Franki type pile was performed by Sy and Siu (IM)

E at the University of British Columbia Pile Research Facility located in the Fraser river delta just

south of Vancouver, B.C.. The soil profile at the testing site consists of 4 m of sand and gravel

fill overlying a I m thick silt layer over fine grained sand to a depth of 40 m. A seismic cone

I penetration test (SCPT 88-6) was conducted 0.9 m from the test pile. In addition, SPT tests were

I conducted in a mud-rotary drill hole (DH88-2) 2.4 m from the test pile. The measured in-situ

shear wave velocity data are presented in Fig. 8.1, together with the cone penetration test (CPT)

I data and the Standard Penetration Test (SPT) data.

The layout of the pile test is shown in Fig. 8.2. The pile has an expanded spherical base

with a nominal diameter of 0.93 m. For 6.4 m above the expanded base, the pile has a nominal

I diameter of 510 umm. The remaining length has a square cross-section with a side width of 510

nnm. A structural mass consisting of 1.6 m cube of reinforced concrete was formed on top of the

pile with a clearance of 150 mm above the ground surface.

I Accelerometers were mounted on the shake mass and the pile cap to measure the dynamic

I input force and the pile cap responses as shown in Fig. 8.2. The vertical and coupled horizontal

and rocking modes of vibration were obtained by rotating the shaker so that the dynamic forces

were applied in the vertical and horizontal directions. The natural frequency of the cap-pile-soil

I system in each vibration mode was estimated by applying random bandwidth excitation. Then a

I
I
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i detailed sinusoidal frequency sweep was carried out around the natural fmquency indicated em

I the random bandwidth test.

The resonant frequencies from the sinusoidal sweep testing are evident in Fig. 8.3. The

i damping ratios are calculated from the measured frequency response curves shown in Fig. 8.3

i using the half power point or bandwidth method (Clough and Penzien, 1975).

IO.

io.. . - - •

i '*uw ?. -O - - - -

I .0- - - -e- -

"E. .0.
as 40 a 3 0 -i sI FREQUDC (HZ)

(Ute Sy4 Siu 192)
EKJENCY (1411)

I Fig. 8.3. The measured dynamic responses of the pile cap under sinusoidal input
(

I
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i Analysis of Tests

The structural properties of the pile cap and the , -a pile used in the analysis ar presented

in Table 8.1. The shear wave velocity V., unit weight y, and damnping ratio D. used in the analysis

are shown in Fig. 8.4. Following Sy and Siu (1992), an upper bound of the measured V. values

i was used to account for the effect of soil desification caused by pile installation except for the

I top 1.2 m depth. V. values in the upper 1.2 m were reduced, since the original soil around the

extended pile shaft section was replaced by the loose backfill. A Poisson's ratio of 0.3 is assumed

i for all soil layers.

I
Table 8.1. Structural properties of pile cap and test pile (after Sy and Siu, 1992).

IPARAMETER UNIT VALUE

PBLE CE AND SHAKER
Mass Mg 10.11S

3 Mass moment of inertia Mg m2  4.317

Height to centre of gravity m 0.8

TEST PILE

Top 1.37m: axial rigidity (EA) MN 6350

I Top 1.37m: flexural rigidity (EI) MN m2  141

1.37-7.77m: axial rigidity (EA) MN 5150

I 1.37-7.77m: flexural rigidity (El) MNm 2  92

Base: axial rigidity (EA) MN 14,720

Base: flexural rigidity (EA) MN mn 800

Material damping ratio 0.01

Poisson's ratio 0.25

I
I
I
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Fig. 8.4. The soil parameters used in analysis (Sy and Siu, 1992).

I Figure 8.5 shows the 3-D finite element model used in present analysis. Due to symmetry,

only half of the full mesh is needed. The finite element model consists of 1225 nodes and 889

elements. There is one beam element above the ground surface to represent the pile segment

I above the ground. The expanded base is modelled by a solid element rather than a beam element

in the finite element analysis.

Since the pile behaves elastically under the very low excitation forces used in the test (F.

= 165 N), it is possible to use an uncoupled analysis and treat the pile foundation and the pile

structure above the ground separately. First the pile impedances are determined as a function of

I frequency. Then the response of the mass on the pile head is computed incorporating the proper

stiffness and damping components of the impedances depending on the frequency of the exciting

I force.

I
Is
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I

i Fig. 8.5. Finite element model used in analysis.

I
The pile head impedances (stiffness and damping) of the pile foundation were computed

using the proposed simplified 3-D finite element method. Harmonic force or moment with unit

i amplitude was applied at the pile head, and the resulting complex valued displacement at the pile

head was determined. Impedances were then evaluated.

The horizontal and rocking responses of the pile head mass were obtained by using the

m two-degree of freedom system shown in Fig. 8.6(b). The coupled translation-rotation equation of

motion in Eq. 8. 1 describes the motion of the system.

i jm m'he]JvpP +[kv+iCvv kvg+iCv v V P ol
m-h• I 0p Lkvg+iCve kee+iCO eW J -=MoJ

i where m is the mass of the pile cap and shaker, h. is the height of the centre of gravity to the pile

head; Iq is the mass moment of inertia at the centre of gravity; 1c. and q-. are the stiffnesses and

I
I
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Fig. 8.6. Uncoupled systems for modelling the vertical motions (a), and the translational and
rotational motions (b).

damping at the pile head; vp and Op are the translation and rotation at the pile head; and P. and MN

are amplitudes of the harmonic external force and moment, respectively, applied at the pile head.

Harmonic load amplitudes of 165 N in the horizontal direction with a coupled moment of

3 335 N.m were applied at the pile head to simulate conditions created by the test.

SThe horizontal displacement amplitude at the centre of gravity, vq is given by

I

I vc9 = V p +0. hog (8.2)

The analyses were carried out at different frequencies w. The computed horizontal

--- displacement amplitude versus frequency w is shown in Fig. 8.7. A very dear and pronounced

peak response is observed at a frequency of 6.67 Hz compared to the measured frequency of 6.5

I Hz. The computed and measured fundamental frequencies and damping ratios for the translation

3 and vertical modes of response are given in Table 8.2. The agreement between them is very good.

I

I
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(expanded bose pile)

a measured

I i frequency

Fig. 8.7. Amplitudes of horizontal displacement at the Centre Of gravity Of tepe P ra ess te
-- excitation frequency (first mode).

m Table 8.2. Computed and measured resonant frequencies and damping ratios.

SMode of Computed Measured Resonant Computed Calculated

iExcitation Resonant Frequency Frequency Damping Ratio Damping Ratio

I II I (Hz) I I I

l Vertical 44.0 46.5 0.04 0.053 eTranslational 6.67 6.50 0.06 0.04I
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I ~CHAPTER 9

I CONCLUSIONS

I A simplified 3-D model of the response of a soil continuum to horizontal earthquake

I shaking has been developed which can simulate the important aspects of the seismic response with

very good accuracy.

The model has been formulated in terms of finite elements and adapted for the dynamic

analysis of piles by the incorporation of beam elements. Solutions can be obtained for both elastic

and nonlinear soil response. Nonlinear response is modelled by maintaining compatibility between

shear strains and effective moduli and damping throughout the dynamic analysis.

The modified 3-D model and its extension to dynamic analysis of piles was the original

conception of Guoxi Wu. (1993).

The model has been validated for elastic response using existing exact elastic solutions.

The soil continuum model alone has been validated using Wood's (1973) exact solution for

dynamic pressures against rigid walls. The pile-soil model has been validated by comparing pile

impedances for single piles computed by the model with those computed by Kaynia and Kausel

(1982) using full 3-D continuum equations. Agreement between model solutions and the more

exact solution is very good.

In the nonlinear mode, the model has been validated for single pile response using data

from strong shaking tests on single pile foundations conducted on the centrifuge at the California

Institute of Technology (Gohl, 1991). The important aspects of acceleration and moment time

histories were simulated well by the model and the distribution of peak moments along the pile

were within 6% of the measured moments.



i 67

I The model simulated successfully the response of a full scale Franid type pile to forced

I ibwration. The test was conducted at the University of British Columbia Pile Research Facility by

Sy and Siu (1992).

The computational time for conducting analyses has been greatly reduced. Thus, the main

i objective of the Phase II studies has been achieved.

It now remains to extend the model to pile groups and to dynamic effective stress analysis.

The latter feature will allow consideration of the effects of high porewater pressures on response.

I
I
I
i
i
i
I
i
I
I
i
I
i
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